• COVID-19
  • About Us
  • Contact Us
  • Events
  • Industries
  • Partners
  • Products & Services
  • Contribute
  • Webinars

Aerospace

  • Québec’s CloudOps Will Build Telesat LightSpeed’s Cloud Network
  • Myriota and Goanna Ag Team Up on IoT Agriculture Solutions
  • Fleet Picks Swissto12 to Deliver Additively Manufactured All-Metal Patch Antennas

Chemical

  • POWER magazine and Chemical Engineering magazine announce Eastman Chemical as the Host Chemical Process Industries (CPI) Sponsor for the 5th annual Connected Plant Conference
  • Evonik deepens partnership with IBM to accelerate AI implementation
  • Achieving Plant Efficiency – the Digital Way

Cybersecurity

  • House Passes Eight Bipartisan Cyber, Homeland Security Bills
  • Biden Administration Targets Electric Utilities For Cybersecurity Protections
  • White House Attributes SolarWinds Hack To Russian Agency

Healthcare

  • CISA Services In High Demand Related To COVID Vaccine Response
  • AI tool detects COVID-19 by listening to patients’ coughs
  • Printing Wearable Sensors Directly onto Skin

Oil & Gas

  • Globalstar Wins Asset Tracking Order from Brazilian Oil and Gas Company
  • Cybersecurity: Continuous Vigilance Required
  • Repsol and Microsoft renew partnership developing AI-powered digital solutions

Power

  • POWER magazine and Chemical Engineering magazine announce Eastman Chemical as the Host Chemical Process Industries (CPI) Sponsor for the 5th annual Connected Plant Conference
  • Self-Tuning Artificial Intelligence Improves Plant Efficiency and Flexibility
  • How to Put the Power Grid to Work to Prevent Wildfires

Transportation

  • Swarm CEO Sara Spangelo Sets Disruptive Pricing on New Satellite IoT Service
  • Trump Issues Cyber Security Plan For Maritime Transportation System
  • Sabic Launches New Compounds for Automotive Radar Sensors

Webinars

  • Anticipating the Unknowns: Accelerating Incident Response Without Losing Control
  • Industrial Endpoint Protection in Operational Technology
  • Known and Unknown: Putting a Stop to OT and IT Threats Before they Act

Sign up today for our free weekly e-letter

sign up
CONNECTING INNOVATIONS
WITH INSIGHT
SIGN UP
LOG IN
  • Aerospace
    Québec's CloudOps Will Build Telesat LightSpeed's Cloud Network
    Read story View all articles
  • Chemical
    POWER magazine and Chemical Engineering magazine announce Eastman Chemical as the Host Chemical Process Industries (CPI) Sponsor for the 5th annual Connected Plant Conference
    Read story View all articles
  • Cybersecurity
    House Passes Eight Bipartisan Cyber, Homeland Security Bills
    Read story View all articles
  • Healthcare
    CISA Services In High Demand Related To COVID Vaccine Response
    Read story View all articles
  • Oil & Gas
    Globalstar Wins Asset Tracking Order from Brazilian Oil and Gas Company
    Read story View all articles
  • Power
    POWER magazine and Chemical Engineering magazine announce Eastman Chemical as the Host Chemical Process Industries (CPI) Sponsor for the 5th annual Connected Plant Conference
    Read story View all articles
  • Transportation
    Swarm CEO Sara Spangelo Sets Disruptive Pricing on New Satellite IoT Service
    Read story View all articles
Chemical Oil & Gas
February 27 2019 2:13 pm

Understanding the Digital Twin

M

Mart Berutti, Emerson

Clarity about the requirements for digital twin technology is essential for any organization's digital transformation

As manufacturers in the chemical process industries (CPI) begin the digital transformation process for their plants and assets, the need for technology to support this change to their plants' operations is also growing. A significant opportunity for digital transformation is found in the digital twin. Teams hoping to drive the most value from digital twin technology should look to seven essential criteria (Figure 1) in order to ensure implementation of a system that will help drive improvement across the operations lifecycle and across the entire organization.

digital twin

FIGURE 1. Versatile digital twin technology supports a wide array of functionality across the plant lifecycle

 

1. A digital twin should be a practical investment

Digital twin architecture can be a practical investment to make, regardless of the size of the plant or industry where it will be used. To help drive better projects and operations, the digital twin simulation functions as a flexible, scalable and holistic lifecycle tool. Organizations and projects of any size can realize value by using digital twin simulation to clarify the cost and risk associated with making operational improvements and improve control of the plant, as well as support upskilling of the workforce.

 

2. A digital twin should support distributed control-system engineering

A holistic approach to the digital twin can improve process and control-system engineering from the earliest stages of project design. The most advanced simulation technologies can leverage existing project assets by taking advantage of the project engineering team's steady-state design models and integrating them – as dynamic process models – into a realtime dynamic simulation to speed and support process engineering execution (Figure 2).

A highly accurate digital twin built on engineering data also allows a project team to perform virtual commissioning to streamline projects. Virtualizing the commissioning steps can simplify factory acceptance testing (FAT), making the process more efficient and taking it off the critical path, ultimately helping ensure projects stay on schedule.

 

digital twin

FIGURE 2. An effective digital twin must leverage advanced simulation tools and ensure that relevant data is integrated during the appropriate project phase

 

3. A digital twin should be designed with a best-cost basis, supporting the goals of projects and processes

To gain the most benefit as plants, processes and assets change over time, digital twin technology takes advantage of scalability to provide greater flexibility across a variety of assets and processes. To accommodate this scalability, selective approaches to model fidelity help organizations drive the most value over the longest time.

A rigid approach limited only to high-fidelity modeling will leave out some equipment and operations due to the investment required and the lack of accurate device models. In contrast, the selective fidelity approach to digital twin simulation provides flexibility to change fidelity as necessary, allowing organizations to build a structure that can evolve and change with the plant's needs.

 

digital twin

FIGURE 3. An effective digital twin may use a selective approach to model fidelity – low, medium and high – to provide a more complete picture of the operation of the plant

 

4. A digital twin should enable safe testing of process updates and changes

The same digital twin that allows for improving capital project execution also should provide organizations with the tools they need to evaluate new control and operations strategies, as well as to develop and deploy advanced process control schemes. Using a digital twin can allow plant management to see the impacts that process control improvement will have on processes and performance – which helps to continually keep the plant safe, efficient and competitive without any risk to current operations.

 

5. A digital twin should enable comprehensive training

It can take six to seven years to properly prepare a plant operator to make good decisions. A digital twin solution can cut this time dramatically, offering a solution to improve the skills of operators, even before a plant begins operation. On a digital twin simulation, years of plant experiences can be compressed into months. As the engineering and construction phases of a project are being completed, operators can use that time to safely and accurately train in preparation for the operations phase.

Using a digital twin, operators can experience accurate representations of plant transitions and transient operations, such as process events, startups and abnormal situations – operations that are the most dangerous and least profitable to personnel and processes, but also rarely seen – allowing personnel to enter production with more confidence and experience.

 

6. A digital twin should be an accurate digital representation of physical-world assets.

Digital twin technology can help organizations safely and securely test and train new operating environments, but only if the users are provided with an accurate simulation. The most advanced digital twin simulations present an exact, complete replica of the control system configuration, ensuring that users interact with control system interfaces that are identical to those they will experience in the real world.

 

7. A digital twin should be easy to use

In a properly implemented digital twin, the interactions between control data, historical data and design data should all be integrated in an elegant, intuitive structure that can evolve and change with the needs of the operation. These solutions combine realtime dynamic process and I/O simulation, as well as operator training options with industry-leading process modeling and high-fidelity dynamic simulation platforms. When designed and integrated properly, these solutions can easily integrate a variety of distributed control systems, programmable logic controllers and emergency shutdown systems, while still delivering a seamless experience that mimics the plant floor.

Usability is key to successful digital transformations. The organizations that see the most benefit from digital transformation technologies are those that use them to improve plant operations, making it easier for personnel to quickly and confidently make the best decisions. Digital twin technology is an effective tool to support capital project execution, as well as operational excellence initiatives for the lifecycle of the plant, and can be the foundation on which to support overall digital transformation.

 

Author

digital twin

Mart Berutti is vice president of process simulation at Emerson (390 S. Woods Rd., Chesterfield, MO, 63017; 1-636-728-2000; Email: martin.berutti@emerson.com). Berutti leads Emerson's Process Simulation Center of Excellence, based in Chesterfield, Missouri. He previously held the role of president and chief operating officer of MYNAH Technologies LLC, from its founding in 2002 until the acquisition by Emerson in 2017.  Prior to Emerson and MYNAH, Berutti worked for Experitec and Munger Company, holding positions of systems engineer, performance consultant, project manager, director of performance technology and director of business development. Previous experience includes Fisher Controls, Rosemount and Applied Automation. Berutti holds a B.S.Ch.E. from the Missouri University of Science and Technology. He also serves on the Academy of Chemical Engineers at Missouri University of Science and Technology.

Sign up today for our free weekly e-letter

sign up

Aerospace

Chemical

Cybersecurity

Healthcare

Oil & Gas

Power

Quiz

Transportation

Webinars

About Us

IIoT Connection delivers the latest news, trends, insights, events and research surrounding the dynamic and disruptive Industrial Internet of Things (IIoT) marketplace. Brought to you by the publisher of must-read publications Defense Daily, OR Manager, POWER and Chemical Engineering, as well as the conference producers of SATELLITE, Global Connected Aircraft Summit, Connected Plant Conference and ELECTRIC POWER, IIoT Connection is committed to providing the most comprehensive compilation of products and services dedicated to the Industrial Internet of Things. Key verticals with associated products and services include: aerospace, chemical, cybersecurity, healthcare, oil & gas, power, and transportation.


Advertise

  • Privacy Policy
© 2021 Access Intelligence, LLC - All Rights Reserved.
  • × UPS Partners with Wingcopter to Develop, Certify Drone Delivery Fleet
    Read story View all articles
  • × How Industrial Managers Can Identify and Prevent Failures in Facilities
    Read story View all articles
  • × Federal Agencies Partner To Improve Cyber Security Cooperation In Energy Sector
    Read story View all articles
  • × New service lines can create opportunities for ORs
    Read story View all articles
  • × Equinor and Shell to collaborate on digital solutions
    Read story View all articles
  • × Dobroflot to Manage Fuel Savings With IOT Solution By Orange Business Services
    Read story View all articles
  • × The Future of 5G & IoT Technologies in the Transportation Industry
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles