• COVID-19
  • About Us
  • Contact Us
  • Events
  • Industries
  • Partners
  • Products & Services
  • Contribute
  • Webinars

Aerospace

  • Québec’s CloudOps Will Build Telesat LightSpeed’s Cloud Network
  • Myriota and Goanna Ag Team Up on IoT Agriculture Solutions
  • Fleet Picks Swissto12 to Deliver Additively Manufactured All-Metal Patch Antennas

Chemical

  • POWER magazine and Chemical Engineering magazine announce Eastman Chemical as the Host Chemical Process Industries (CPI) Sponsor for the 5th annual Connected Plant Conference
  • Evonik deepens partnership with IBM to accelerate AI implementation
  • Achieving Plant Efficiency – the Digital Way

Cybersecurity

  • House Passes Eight Bipartisan Cyber, Homeland Security Bills
  • Biden Administration Targets Electric Utilities For Cybersecurity Protections
  • White House Attributes SolarWinds Hack To Russian Agency

Healthcare

  • CISA Services In High Demand Related To COVID Vaccine Response
  • AI tool detects COVID-19 by listening to patients’ coughs
  • Printing Wearable Sensors Directly onto Skin

Oil & Gas

  • Globalstar Wins Asset Tracking Order from Brazilian Oil and Gas Company
  • Cybersecurity: Continuous Vigilance Required
  • Repsol and Microsoft renew partnership developing AI-powered digital solutions

Power

  • POWER magazine and Chemical Engineering magazine announce Eastman Chemical as the Host Chemical Process Industries (CPI) Sponsor for the 5th annual Connected Plant Conference
  • Self-Tuning Artificial Intelligence Improves Plant Efficiency and Flexibility
  • How to Put the Power Grid to Work to Prevent Wildfires

Transportation

  • Swarm CEO Sara Spangelo Sets Disruptive Pricing on New Satellite IoT Service
  • Trump Issues Cyber Security Plan For Maritime Transportation System
  • Sabic Launches New Compounds for Automotive Radar Sensors

Webinars

  • Anticipating the Unknowns: Accelerating Incident Response Without Losing Control
  • Industrial Endpoint Protection in Operational Technology
  • Known and Unknown: Putting a Stop to OT and IT Threats Before they Act

Sign up today for our free weekly e-letter

sign up
CONNECTING INNOVATIONS
WITH INSIGHT
SIGN UP
LOG IN
  • Aerospace
    Québec's CloudOps Will Build Telesat LightSpeed's Cloud Network
    Read story View all articles
  • Chemical
    POWER magazine and Chemical Engineering magazine announce Eastman Chemical as the Host Chemical Process Industries (CPI) Sponsor for the 5th annual Connected Plant Conference
    Read story View all articles
  • Cybersecurity
    House Passes Eight Bipartisan Cyber, Homeland Security Bills
    Read story View all articles
  • Healthcare
    CISA Services In High Demand Related To COVID Vaccine Response
    Read story View all articles
  • Oil & Gas
    Globalstar Wins Asset Tracking Order from Brazilian Oil and Gas Company
    Read story View all articles
  • Power
    POWER magazine and Chemical Engineering magazine announce Eastman Chemical as the Host Chemical Process Industries (CPI) Sponsor for the 5th annual Connected Plant Conference
    Read story View all articles
  • Transportation
    Swarm CEO Sara Spangelo Sets Disruptive Pricing on New Satellite IoT Service
    Read story View all articles
Power
February 3 2020 12:29 am

Using Self-Service Analytics to Improve Power Plant Efficiency

E

Edwin van Dijk

There is a widespread movement to reduce carbon emissions around the world. One way to do so is by improving plant efficiency, but that can be easier said than done. However, self-service analytics could play a role in the process. Advanced technology can help subject matter experts spot areas for improvement faster and more effectively than was previously possible.

The discussion about climate change has been taking place for many years and is currently hotter than ever. The debate has led to global initiatives to reduce the carbon footprint, which is high on the agenda of pretty much every country's government. The energy industry is confronted with high-impacting measures due to decarbonization programs, such as the European Union's decarbonization target of zero by 2050. This drives the change toward renewable energy, but also asks for measures to generate carbon-neutral power.

Part of the solution is the reduction of the energy needed in power generation plants and making those plants more efficient. This can be found in two major areas: improving overall equipment effectiveness and reducing the energy in utilities required for the process of generating energy.

At a recent power conference, one expert noted that the energy sector has experienced disruptive changes over the past 20 years, but by putting climate protection first, the industry has set an unprecedented example of global leadership and has shown that change is possible in less than a decade. Decarbonization and decentralization will likely remain the focus for decades to come, yet the biggest opportunity for the industry may be to take digitalization from first-movers to full industry-wide implementation.

The external force to reduce the carbon footprint also has an overall profitability benefit. Within the power industry, energy itself is often one of the largest components of a company's cost structure. Although energy management to reduce costs in itself is not new, it has become more important due to imposed regulations. Most companies have formalized energy management programs, and use automation and control technologies to help minimize energy costs. However, it is clear that many companies need to take their efforts to the next level by monitoring and optimizing energy use in real time, and leveraging industrial internet of things (IIoT)-generated data (data generated by sensors and devices).

For many years, process data has been captured in historians, such as OSIsoft PI and AspenTech IP-21. All this data needs to be unlocked and leveraged for continuous improvement to reduce the energy consumption of companies. Data analytics has been utilized by large companies to some extent for the biggest energy issues at sites. These time-consuming, centrally led, data-modeling projects are less suited for process-related optimization projects that require subject matter expertise. New tools put advanced analytics in the hands of subject matter experts such as process and field engineers. This allows them to handle 80% of energy-related cases that contribute to the corporate goals for reducing the carbon footprint.

Energy Management 4.0

Global interest in Industry 4.0 has accelerated the digital transformation in the process manufacturing industry, including the energy sector. Many companies have engaged in technology pilots (Figure 1) to explore options for reducing costs, increasing overall equipment effectiveness, or managing regulatory compliance. One of the best ways to leverage these new innovations is to apply advanced industrial analytics to sensors-generated production data. Every piece of data provides unprecedented opportunities for improving energy efficiency.

1. It can take a few years for structured energy management (SEM) to change the culture of operations. However, once management is aligned and committed to SEM, basic energy management systems can be installed and improvements can be made to facilities management that will yield immediate benefits. Source: Department of Energy as published by Nexant Vice President of Utility Services Brian Albert, PE in "Fundamentals of Strategic Energy Management"

In general, energy savings can be achieved in various ways, including through change in daily behavior (switching off the light), by installing more energy-efficient equipment, by maintaining equipment before it becomes inefficient, or through process optimization such as ensuring use within the best operating zones. Process and asset performance optimization are probably the biggest areas for energy savings, but they require a deeper understanding of operational process and asset data (available in the historian).

Improving Overall Equipment Effectiveness

Process engineers are responsible for the design, implementation, control, and optimization of industrial processes. They are typically involved in analyzing, upgrading, modifying, and optimizing equipment and production processes. If the production process is stagnating or under-performing, they need to figure out why, but also in the shortest time possible to avoid production losses, maintain product quality, and elude high maintenance and repair costs.

Implementing self-service industrial analytics can enable engineers to get more robust and faster insights into their operational production data. It enables them to identify new areas for performance optimization with advanced root cause analysis capabilities, monitor production to avoid abnormal situations, and even predict future evolutions of batch runs, transitions, or equipment startups in minutes. It enables the business users, such as process and asset engineers, to:

    ■ Solve previously unsolved process performance issues.
    ■ Verify hypotheses and prove them to be either true or false, so they can be addressed or ruled out for the future.
    ■ Find new ways to improve production performance, because data with captured events and early warnings provides new insights.
    ■ Use contextual information from third-party business applications to get new insights in operational performance.
    ■ Use actionable dashboards to monitor operational performance in real-time (Figure 2).

2. Analytics-driven production cockpit, helping engineers to monitor and continuously improve overall equipment effectiveness. Courtesy: TrendMiner

By working on all these situations, the result is a higher overall equipment efficiency, where the asset performance is optimized within its operational context, leading to waste reduction, higher and cleaner uptime, and reduction of the carbon footprint of the plant.

Analyze, Monitor, and Predict WAGES Consumption

The major process-related energy consumers can be easily remembered using the acronym WAGES, which stands for hot water, air, gas, electricity, and steam. WAGES can be directly or indirectly analyzed through all the sensor data. The data can be analyzed descriptively to see what has happened, which provides the best understanding if a long period of performance can be assessed. Sometimes, certain issues happen only a couple of times per year, but can have a big impact on energy consumption, for example, a trip causing a shutdown. Discovery analytics helps to understand what has happened and through diagnostic analytics the organization can start monitoring the performance of the site.

Because asset performance is contextualized by the process it functions in, best operating zones or best performance windows need to be subtracted from actual process behavior rather than theoretical data. Historical data fingerprints can be created to monitor good and bad behavior, optionally with an energy consumption focus. Next, live operational performance data can be used for predictive analytics; for example, performance downstream might be caused by behavior an hour or more upstream.

Practical Use Cases

Advanced analytics have been applied to analyze, monitor, and predict process and asset performance for many energy management-related use cases. Two instances are described below.

Increased Efficiency of a Power Generation Plant. A typical combined cycle gas power plant for producing electricity is equipped with two turbines that power a generator. The primary turbine is powered by hot air, which is generated by burning the gas. The secondary turbine is powered by steam that is generated by heating up water with the exhaust gases coming from the primary turbine.

Over time, the performance of a unit at one particular power station began to worsen, leading to capacity loss and lost revenue. The loss was gradual, so the change went unnoticed at first. A decrease in performance is usually a gradual phenomenon that only comes to surface after a long period of time. With the self-service advanced analytics tool, the engineers could clearly visualize operations over time. Using a value-based search, the decline in performance was quickly confirmed and quantified. This formed the foundation for the rest of the troubleshooting analysis.

Due to external factors, such as unplanned downtime and market-driven load reductions, the team needed to dig deeper to measure the actual performance of the unit. To do this, researchers compared the periods of good performance with the periods of bad performance.

The engineers found that the gas fuel flow, the compressor discharge temperature, and the inlet guide vanes reference angle differed consistently for both groups of layers. With the self-service analytics tool it could be proven that the root cause of the problem was the non-calibrated inlet guide vanes, which impeded air and fuel supply, and ultimately power generation in the gas turbine. In only four hours, the engineers efficiently identified and resolved the 2-MW capacity loss without the need of data scientists.

Control Energy Consumption within the Cooling Water Network. A number of reactors were consuming cooling capacity from the utility network for cooling water. Sufficient cooling capacity is critical for these reactors, as thermal runaway could occur when the available capacity is insufficient.

To avoid this undesirable situation, advanced analytics were set up to monitor the cooling capacity in real time. Early warnings were created and designed to trigger only on actual problem situations, avoiding false positive alarms that could be triggered by measurement noise or spikes in the data. Now, upon a warning, there is ample time for the process engineer and operators to re-balance the reactors and deprioritize other equipment, so that the critical components can consume the maximum cooling capacity while keeping overall energy consumption within target boundaries.

Energy management is not new; many companies have a structured energy management program in place. However, new self-service analytics tools allow subject matter experts to analyze, monitor, and predict process and asset performance more quickly and accurately, which can result in a huge contribution to meet the organizational carbon-footprint goals. This is especially important after the low-hanging fruit for energy savings have been picked and more knowledge is needed to improve operational performance. Companies benefit by improving overall profitability and increasing safety. ■

–Edwin van Dijk is vice president of marketing with TrendMiner, a company that develops advanced analytics solutions for the process industry.

Sign up today for our free weekly e-letter

sign up

Aerospace

Chemical

Cybersecurity

Healthcare

Oil & Gas

Power

Quiz

Transportation

Webinars

About Us

IIoT Connection delivers the latest news, trends, insights, events and research surrounding the dynamic and disruptive Industrial Internet of Things (IIoT) marketplace. Brought to you by the publisher of must-read publications Defense Daily, OR Manager, POWER and Chemical Engineering, as well as the conference producers of SATELLITE, Global Connected Aircraft Summit, Connected Plant Conference and ELECTRIC POWER, IIoT Connection is committed to providing the most comprehensive compilation of products and services dedicated to the Industrial Internet of Things. Key verticals with associated products and services include: aerospace, chemical, cybersecurity, healthcare, oil & gas, power, and transportation.


Advertise

  • Privacy Policy
© 2021 Access Intelligence, LLC - All Rights Reserved.
  • × UPS Partners with Wingcopter to Develop, Certify Drone Delivery Fleet
    Read story View all articles
  • × How Industrial Managers Can Identify and Prevent Failures in Facilities
    Read story View all articles
  • × Federal Agencies Partner To Improve Cyber Security Cooperation In Energy Sector
    Read story View all articles
  • × New service lines can create opportunities for ORs
    Read story View all articles
  • × Equinor and Shell to collaborate on digital solutions
    Read story View all articles
  • × Dobroflot to Manage Fuel Savings With IOT Solution By Orange Business Services
    Read story View all articles
  • × The Future of 5G & IoT Technologies in the Transportation Industry
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles