• COVID-19
  • About Us
  • Contact Us
  • Events
  • Industries
  • Partners
  • Products & Services
  • Contribute
  • Webinars

Aerospace

  • Québec’s CloudOps Will Build Telesat LightSpeed’s Cloud Network
  • Myriota and Goanna Ag Team Up on IoT Agriculture Solutions
  • Fleet Picks Swissto12 to Deliver Additively Manufactured All-Metal Patch Antennas

Chemical

  • POWER magazine and Chemical Engineering magazine announce Eastman Chemical as the Host Chemical Process Industries (CPI) Sponsor for the 5th annual Connected Plant Conference
  • Evonik deepens partnership with IBM to accelerate AI implementation
  • Achieving Plant Efficiency – the Digital Way

Cybersecurity

  • House Passes Eight Bipartisan Cyber, Homeland Security Bills
  • Biden Administration Targets Electric Utilities For Cybersecurity Protections
  • White House Attributes SolarWinds Hack To Russian Agency

Healthcare

  • CISA Services In High Demand Related To COVID Vaccine Response
  • AI tool detects COVID-19 by listening to patients’ coughs
  • Printing Wearable Sensors Directly onto Skin

Oil & Gas

  • Globalstar Wins Asset Tracking Order from Brazilian Oil and Gas Company
  • Cybersecurity: Continuous Vigilance Required
  • Repsol and Microsoft renew partnership developing AI-powered digital solutions

Power

  • POWER magazine and Chemical Engineering magazine announce Eastman Chemical as the Host Chemical Process Industries (CPI) Sponsor for the 5th annual Connected Plant Conference
  • Self-Tuning Artificial Intelligence Improves Plant Efficiency and Flexibility
  • How to Put the Power Grid to Work to Prevent Wildfires

Transportation

  • Swarm CEO Sara Spangelo Sets Disruptive Pricing on New Satellite IoT Service
  • Trump Issues Cyber Security Plan For Maritime Transportation System
  • Sabic Launches New Compounds for Automotive Radar Sensors

Webinars

  • Anticipating the Unknowns: Accelerating Incident Response Without Losing Control
  • Industrial Endpoint Protection in Operational Technology
  • Known and Unknown: Putting a Stop to OT and IT Threats Before they Act

Sign up today for our free weekly e-letter

sign up
CONNECTING INNOVATIONS
WITH INSIGHT
SIGN UP
LOG IN
  • Aerospace
    Québec's CloudOps Will Build Telesat LightSpeed's Cloud Network
    Read story View all articles
  • Chemical
    POWER magazine and Chemical Engineering magazine announce Eastman Chemical as the Host Chemical Process Industries (CPI) Sponsor for the 5th annual Connected Plant Conference
    Read story View all articles
  • Cybersecurity
    House Passes Eight Bipartisan Cyber, Homeland Security Bills
    Read story View all articles
  • Healthcare
    CISA Services In High Demand Related To COVID Vaccine Response
    Read story View all articles
  • Oil & Gas
    Globalstar Wins Asset Tracking Order from Brazilian Oil and Gas Company
    Read story View all articles
  • Power
    POWER magazine and Chemical Engineering magazine announce Eastman Chemical as the Host Chemical Process Industries (CPI) Sponsor for the 5th annual Connected Plant Conference
    Read story View all articles
  • Transportation
    Swarm CEO Sara Spangelo Sets Disruptive Pricing on New Satellite IoT Service
    Read story View all articles
Power
June 24 2020 12:20 pm

GE Integrating AI to Enable Performance-Informed Gas Turbine Inverse Design

P

Press Release

  • GE researchers developing an artificial intelligence (AI) and machine learning (ML)- enabled inverse design framework that allows performance metrics to create more optimized designs for industrial gas turbine (IGT) aerodynamic components  
  • Project aims to achieve a 30-50% reduction in design cycle times, or from 1 year to a few months
  • Partnered with University of Notre Dame and GE Gas Power on the project
  • Emerging digital toolset will help push combined cycle power plant efficiency to new heights

NISKAYUNA, NY – June 24, 2020 – Aiming to let new performance metrics be the principal driver in the design of cleaner, more efficient aerodynamic energy systems, GE Research, the technology development arm for GE, has been awarded Phase I of a two-year, $2.1 million project through ARPA-E's DIFFERENTIATE (Design Intelligence Fostering Formidable Energy Reduction and Enabling Novel Totally Impactful Advanced Technology Enhancements) program to build an AI-driven invertible neural network that can direct translate these metrics into optimized designs.

Today, complex aerodynamic energy components such as gas turbine blades have extremely long design cycle times of more than a year that require compromise between cost, performance and reliability.  GE researchers, together with GE's Gas Power business and the University of Notre Dame, are aiming to develop and demonstrate a new AI and ML-enabled design framework that takes half the time and is dictated almost entirely by the desired performance metrics to take the design of aerodynamic energy components to a whole new level.

Sayan Ghosh, a Lead Engineer in Probabilistic Design and project leader, explained the team is building a probabilistic inverse design machine learning framework – Pro-ML IDeAS – which uses an AI-driven invertible neural network to overcome multiple design iterations and challenges that typically require engineering expertise across many complex functional spaces to solve. "This will essentially create a paradigm shift in gas turbine design by enabling us to explore and discover new learning curves not previously possible," Ghosh says.  "We believe that the Pro-ML IDeAS, powered by AI and ML, will allow us to break free from the traditional design constraints and let us achieve more optimal designs in significantly less time versus the current state-of-the-art."

Ghosh added, "One of the chief reasons GE Gas Power has set world records in combined cycle gas turbine (CCGT) efficiency, is the design of more efficient aerodynamic parts and components.   With the integration of new AI-powered digital solutions like our invertible neural network being supported through ARPA-E's DIFFERENTIATE program, we will be well on the path to achieving 65% efficiency and beyond."

GE's HA gas turbine technology, which includes some of the most highly advanced parts and components, has helped to deliver two world records - one for powering the world's most efficient combined cycle power plant, based on achieving 63.08 percent gross efficiency at Chubu Electric Nishi-Nagoya Power Plant Block-1 in Japan and another for helping EDF's Bouchain Power Plant achieve 62.22 percent net combined cycle efficiency in France.

Together with the GE Research and Gas Power teams, a team of researchers from the University of Notre Dame team led by Prof. Nicholas Zabaras will bring more than 30 years of experience solving tough inverse/design problems. Prof. Zabaras's pioneering work in the area of regularization techniques, high-dimensional Bayesian inverse methods, Gaussian process models for inversion, and most recently the integration of deep learning and inversion tasks will further accelerate learnings on this project.

The end goal of the two- year project is to create an inverse design process to optimize the design of a gas turbine blade component and reduce the design cycle time.  In future, the framework will also be extended to other applications such as aviation turbine engines, aeroderivative engines, wind turbines, and hydro turbines.

About GE Research
GE Research is GE's innovation powerhouse where research meets reality. We are a world-class team of scientific, engineering and marketing minds working at the intersection of physics and markets, physical and digital technologies, and across a broad set of industries to deliver world-changing innovations and capabilities for our customers. To learn more, visit our website at https://www.ge.com/research/.

Sign up today for our free weekly e-letter

sign up

Aerospace

Chemical

Cybersecurity

Healthcare

Oil & Gas

Power

Quiz

Transportation

Webinars

About Us

IIoT Connection delivers the latest news, trends, insights, events and research surrounding the dynamic and disruptive Industrial Internet of Things (IIoT) marketplace. Brought to you by the publisher of must-read publications Defense Daily, OR Manager, POWER and Chemical Engineering, as well as the conference producers of SATELLITE, Global Connected Aircraft Summit, Connected Plant Conference and ELECTRIC POWER, IIoT Connection is committed to providing the most comprehensive compilation of products and services dedicated to the Industrial Internet of Things. Key verticals with associated products and services include: aerospace, chemical, cybersecurity, healthcare, oil & gas, power, and transportation.


Advertise

  • Privacy Policy
© 2021 Access Intelligence, LLC - All Rights Reserved.
  • × UPS Partners with Wingcopter to Develop, Certify Drone Delivery Fleet
    Read story View all articles
  • × How Industrial Managers Can Identify and Prevent Failures in Facilities
    Read story View all articles
  • × Federal Agencies Partner To Improve Cyber Security Cooperation In Energy Sector
    Read story View all articles
  • × New service lines can create opportunities for ORs
    Read story View all articles
  • × Equinor and Shell to collaborate on digital solutions
    Read story View all articles
  • × Dobroflot to Manage Fuel Savings With IOT Solution By Orange Business Services
    Read story View all articles
  • × The Future of 5G & IoT Technologies in the Transportation Industry
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles
  • ×
    Read story View all articles